ResampleImage
- class jwst.resample.resample.ResampleImage(input_models, pixfrac=1.0, kernel='square', fillval='NAN', weight_type='ivm', good_bits=0, blendheaders=True, output_wcs=None, wcs_pars=None, output=None, enable_ctx=True, enable_var=True, report_var=True, compute_err=None, asn_id=None)[source]
Bases:
ResampleResample imaging data.
Initialize the ResampleImage object.
- Parameters:
- input_models
ModelLibrary A
ModelLibrary-based object allowing iterating over all contained models of interest.- pixfracfloat, optional
The fraction of a pixel that the pixel flux is confined to. The default value of 1 has the pixel flux evenly spread across the image. A value of 0.5 confines it to half a pixel in the linear dimension, so the flux is confined to a quarter of the pixel area when the square kernel is used.
- kernel{“square”, “gaussian”, “point”, “turbo”, “lanczos2”, “lanczos3”}, optional
The name of the kernel used to combine the input. The choice of kernel controls the distribution of flux over the kernel. The square kernel is the default.
Warning
The “gaussian” and “lanczos2/3” kernels DO NOT conserve flux.
- fillvalfloat, None, str, optional
The value of output pixels that did not have contributions from input images’ pixels. When
fillvalis eitherNoneor"INDEF"andout_imgis provided, the values ofout_imgwill not be modified. Whenfillvalis eitherNoneor"INDEF"andout_imgis not provided, the values ofout_imgwill be initialized tonumpy.nan. Iffillvalis a string that can be converted to a number, then the output pixels with no contributions from input images will be set to thisfillvalvalue.- weight_type{“exptime”, “ivm”}, optional
The weighting type for adding models’ data. For
weight_type="ivm"(the default), the weighting will be determined per-pixel using the inverse of the read noise (VAR_RNOISE) array stored in each input image. If theVAR_RNOISEarray does not exist, the variance is set to 1 for all pixels (i.e., equal weighting). Ifweight_type="exptime", the weight will be set equal to the measurement time when available and to the exposure time otherwise.- good_bitsint, str, None, optional
An integer bit mask,
None, a Python list of bit flags, a comma-, or'|'-separated,'+'-separated string list of integer bit flags or mnemonic flag names that indicate what bits in models’ DQ bitfield array should be ignored (i.e., zeroed).When co-adding models using
add_model(), any pixels with a non-zero DQ values are assigned a weight of zero and therefore they do not contribute to the output (resampled) data.good_bitsprovides a mean to ignore some of the DQ bitflags.When
good_bitsis an integer, it must be the sum of all the DQ bit values from the input model’s DQ array that should be considered “good” (or ignored). For example, if pixels in the DQ array can be combinations of 1, 2, 4, and 8 flags and one wants to consider DQ “defects” having flags 2 and 4 as being acceptable, thengood_bitsshould be set to 2+4=6. Then a pixel with DQ values 2,4, or 6 will be considered a good pixel, while a pixel with DQ value, e.g., 1+2=3, 4+8=12, etc. will be flagged as a “bad” pixel.Alternatively, when
good_bitsis a string, it can be a comma-separated or ‘+’ separated list of integer bit flags that should be summed to obtain the final “good” bits. For example, both “4,8” and “4+8” are equivalent to integergood_bits=12.Finally, instead of integers,
good_bitscan be a string of comma-separated mnemonics. For example, for JWST, all the following specifications are equivalent:"12" == "4+8" == "4, 8" == "JUMP_DET, DROPOUT"
In order to “translate” mnemonic code to integer bit flags,
Resample.dq_flag_name_mapattribute must be set to either a dictionary (with keys being mnemonc codes and the values being integer flags) or aBitFlagNameMap.In order to reverse the meaning of the flags from indicating values of the “good” DQ flags to indicating the “bad” DQ flags, prepend ‘~’ to the string value. For example, in order to exclude pixels with DQ flags 4 and 8 for computations and to consider as “good” all other pixels (regardless of their DQ flag), use a value of
~4+8, or~4,8. A string value of~0would be equivalent to a setting ofNone.Default value (0) will make all pixels with non-zero DQ values be considered “bad” pixels, and the corresponding data pixels will be assigned zero weight and thus these pixels will not contribute to the output resampled data array.
Set
good_bitstoNoneto turn off the use of model’s DQ array.For more details, see documentation for
astropy.nddata.bitmask.extend_bit_flag_map.- blendheadersbool, optional
Indicates whether to blend metadata from all input models and store the combined result to the output model.
- output_wcsdict, None, optional
Specifies output WCS as a dictionary with keys
'wcs'(WCS object) and'pixel_scale'(pixel scale in arcseconds).'pixel_scale', when provided, will be used for computation of drizzle scaling factor. When it is not provided, output pixel scale will be estimated from the provided WCS object.output_wcsobject is required whenoutput_modelisNone.output_wcsis ignored whenoutput_modelis provided.- wcs_parsdict, None, optional
A dictionary of custom WCS parameters used to define an output WCS from input models’ outlines. This argument is ignored when
output_wcsis specified.List of supported parameters (keywords in the dictionary):
pixel_scale_ratio: floatDesired pixel scale ratio defined as the ratio of the desired output pixel scale to the first input model’s pixel scale computed from this model’s WCS at the fiducial point (taken as the
ref_raandref_decfrom thewcsinfometa attribute of the first input image). Ignored whenpixel_scaleis specified. Default value is1.0.pixel_scale: float, NoneDesired pixel scale (in arcsec) of the output WCS. When provided, overrides
pixel_scale_ratio. Default value isNone.output_shape: tuple of two integers (int, int), NoneShape of the image (data array) using
np.ndarrayconvention (nyfirst andnxsecond). This value will be assigned topixel_shapeandarray_shapeproperties of the returned WCS object. Default value isNone.rotation: float, NonePosition angle of output image’s Y-axis relative to North. A value of
0.0would orient the final output image to be North up. The default ofNonespecifies that the images will not be rotated, but will instead be resampled in the default orientation for the camera with the x and y axes of the resampled image corresponding approximately to the detector axes. Ignored whentransformis provided. Default value isNone.crpix: tuple of float, NonePosition of the reference pixel in the resampled image array. If
crpixis not specified, it will be set to the center of the bounding box of the returned WCS object. Default value isNone.crval: tuple of float, NoneRight ascension and declination of the reference pixel. Automatically computed if not provided. Default value is
None.
- outputstr, None, optional
Filename for the output model.
- enable_ctxbool, optional
Indicates whether to create a context image. If
disable_ctxis set toTrue, parametersout_ctx,begin_ctx_id, andmax_ctx_idwill be ignored.- enable_varbool, optional
Indicates whether to resample variance arrays.
- report_varbool, optional
Indicates whether to report variance arrays in the output model. In order to get an error array when compute_err=from_var, enable_var must be True, but sometimes it’s useful not to save var_rnoise, var_flat, and var_poisson arrays to decrease output file size.
- compute_err{“from_var”, “driz_err”}, None, optional
"from_var": compute output model’s error array from all (Poisson, flat, readout) resampled variance arrays. Settingcompute_errto"from_var"will assumeenable_varwas set toTrueregardless of actual value of the parameterenable_var."driz_err": compute output model’s error array by drizzling together all input models’ error arrays.
Error array will be assigned to
'err'key of the output model.Note
At this time, output error array is not equivalent to error propagation results.
- asn_idstr, None, optional
The association id. The id is what appears in the Association Naming.
- input_models
Attributes Summary
Methods Summary
add_model(model)Add a single input model to the resampling.
Combine the input model S_REGIONs into a single S_REGION.
create_output_jwst_model([ref_input_model])Create a new blank model and update its meta with info from
ref_input_model.finalize()Perform final computations and set output model values and metadata.
input_model_to_dict(model, weight_type, ...)Convert a data model to a dictionary of keywords and values expected by
stcal.resample.resample_group(indices)Resample multiple input images belonging to a single
group_id.resample_many_to_many([in_memory])Resample many inputs to many outputs where outputs have a common frame.
Resample and coadd many inputs to a single output.
reset_arrays([n_input_models])Initialize/reset between
finalize()andadd_model()calls.update_fits_wcsinfo(model)Update FITS WCS keywords of the resampled image.
update_output_model(model, info_dict)Add meta information to the output model.
Attributes Documentation
- dq_flag_name_map = {'ADJ_OPEN': 134217728, 'AD_FLOOR': 64, 'BAD_REF_PIXEL': 131072, 'CHARGELOSS': 128, 'DEAD': 1024, 'DO_NOT_USE': 1, 'DROPOUT': 8, 'FLUX_ESTIMATED': 268435456, 'GOOD': 0, 'HOT': 2048, 'JUMP_DET': 4, 'LOW_QE': 8192, 'MSA_FAILED_OPEN': 536870912, 'NONLINEAR': 65536, 'NON_SCIENCE': 512, 'NO_FLAT_FIELD': 262144, 'NO_GAIN_VALUE': 524288, 'NO_LIN_CORR': 1048576, 'NO_SAT_CHECK': 2097152, 'OPEN': 67108864, 'OTHER_BAD_PIXEL': 1073741824, 'OUTLIER': 16, 'PERSISTENCE': 32, 'RC': 16384, 'REFERENCE_PIXEL': 2147483648, 'RESERVED': 256, 'SATURATED': 2, 'TELEGRAPH': 32768, 'UNRELIABLE_BIAS': 4194304, 'UNRELIABLE_DARK': 8388608, 'UNRELIABLE_FLAT': 33554432, 'UNRELIABLE_SLOPE': 16777216, 'WARM': 4096}
Methods Documentation
- add_model(model)[source]
Add a single input model to the resampling.
- Parameters:
- modelImageModel
A JWST data model to be resampled.
- combine_input_sregions()[source]
Combine the input model S_REGIONs into a single S_REGION.
- Returns:
- str
The combined S_REGION.
- create_output_jwst_model(ref_input_model=None)[source]
Create a new blank model and update its meta with info from
ref_input_model.- Parameters:
- ref_input_model
JwstDataModel, optional The reference input model from which to copy meta data.
- ref_input_model
- Returns:
ImageModelA new blank model with updated meta data.
- input_model_to_dict(model, weight_type, enable_var, compute_err)[source]
Convert a data model to a dictionary of keywords and values expected by
stcal.resample.- Parameters:
- modelDataModel
A JWST data model.
- weight_typestr
The weighting type for adding models’ data.
- enable_varbool
Indicates whether to resample variance arrays.
- compute_errstr
The method to compute the output model’s error array.
- Returns:
- dict
A dictionary of keywords and values expected by
stcal.resample.
- resample_group(indices)[source]
Resample multiple input images belonging to a single
group_id.If
output_jwst_modelwas created by a previous call to this method,output_jwst_modelas well as other arrays (weights, context, etc.) will be cleared. Upon completion, this method callsfinalize()to compute final values for various attributes of the resampled model (e.g., exposure start and end times, etc.)- Parameters:
- indiceslist
Indices of models in
input_modelsmodel library (used to initialize this object) that have the samegroup_idand need to be resampled together.
- Returns:
- output_jwst_model
Resampled model with populated data, weights, error arrays and other attributes.
- resample_many_to_many(in_memory=True)[source]
Resample many inputs to many outputs where outputs have a common frame.
Coadd only different detectors of the same exposure, i.e., map NRCA5 and NRCB5 onto the same output image, as they image different areas of the sky.
Used for outlier detection.
- Parameters:
- in_memorybool, optional
Indicates whether to return a
ModelLibrarywith resampled models loaded in memory or whether to serialize resampled models to files on disk and return aModelLibrarywith only the association info. See On Disk Mode for more details.
- Returns:
ModelLibraryA library of resampled models.
- resample_many_to_one()[source]
Resample and coadd many inputs to a single output.
Used for stage 3 resampling.
- Returns:
ImageModelThe resampled and coadded image.
- reset_arrays(n_input_models=None)[source]
Initialize/reset between
finalize()andadd_model()calls.Resets or re-initializes
Drizzleobjects,ModelBlender, output model and arrays, and time counters. Output WCS and shape are not modified fromResampleobject initialization. This method needs to be called before callingadd_model()for the first time afterfinalize()was previously called.- Parameters:
- n_input_modelsint, None, optional
Number of input models expected to be resampled. When provided, this is used to estimate memory requirements and optimize memory allocation for the context array.
- static update_fits_wcsinfo(model)[source]
Update FITS WCS keywords of the resampled image.
- Parameters:
- model
ImageModel The resampled image
- model