OutlierDetectionStep
- class jwst.outlier_detection.OutlierDetectionStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)[source]
Bases:
JwstStepFlag outlier bad pixels and cosmic rays in DQ array of each input image.
Input images can be listed in an input association file or dictionary, or already opened with a ModelContainer or ModelLibrary. DQ arrays are modified in place. SCI, ERR, VAR_RNOISE, VAR_FLAT, and VAR_POISSON arrays are updated with NaN values matching the DQ flags.
Create a
Stepinstance.- Parameters:
- namestr
The name of the Step instance. Used in logging messages and in cache filenames. If not provided, one will be generated based on the class name.
- parent
Step The parent step of this step. Used to determine a fully-qualified name for this step, and to determine the mode in which to run this step.
- config_filestr or pathlib.Path
The path to the config file that this step was initialized with. Use to determine relative path names of other config files.
- _validate_kwdsbool
Validate given
kwsagainst specs/config.- **kwsdict
Additional parameters to set. These will be set as member variables on the new Step instance.
Attributes Summary
Methods Summary
process(input_data)Perform outlier detection processing on input data.
Attributes Documentation
- class_alias = 'outlier_detection'
- spec
weight_type = option('ivm','exptime',default='ivm') pixfrac = float(min=0.0, max=1.0, default=1.0) # Pixel shrinkage factor kernel = option('square','point','turbo',default='square') # Flux distribution kernel fillval = string(default='NAN') maskpt = float(default=0.7) snr = string(default='5.0 4.0') scale = string(default='1.2 0.7') backg = float(default=0.0) kernel_size = string(default='7 7') threshold_percent = float(default=99.8) rolling_window_width = integer(default=25) ifu_second_check = boolean(default=False) save_intermediate_results = boolean(default=False) resample_data = boolean(default=True) good_bits = string(default="~DO_NOT_USE") # DQ flags to allow search_output_file = boolean(default=False) in_memory = boolean(default=True) # in_memory flag ignored if run within the pipeline; set at pipeline level instead
Methods Documentation
- process(input_data)[source]
Perform outlier detection processing on input data.
- Parameters:
- input_dataasn file,
ModelContainer, orModelLibrary The input association. For imaging modes a ModelLibrary is expected, whereas for spectroscopic modes a ModelContainer is expected.
- input_dataasn file,
- Returns:
- result_models
ModelContainerorModelLibrary The modified input data with DQ flags set for detected outliers.
- result_models