CleanFlickerNoiseStep

class jwst.clean_flicker_noise.CleanFlickerNoiseStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)[source]

Bases: JwstStep

Perform flicker noise correction.

Create a Step instance.

Parameters:
namestr

The name of the Step instance. Used in logging messages and in cache filenames. If not provided, one will be generated based on the class name.

parentStep

The parent step of this step. Used to determine a fully-qualified name for this step, and to determine the mode in which to run this step.

config_filestr or pathlib.Path

The path to the config file that this step was initialized with. Use to determine relative path names of other config files.

_validate_kwdsbool

Validate given kws against specs/config.

**kwsdict

Additional parameters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input_data)

Fit and subtract 1/f background noise from a ramp data set.

Attributes Documentation

class_alias = 'clean_flicker_noise'
reference_file_types: ClassVar = ['flat']
spec
autoparam = boolean(default=False) # Automatically select some fit and background parameters for the input data.
fit_method = option('fft', 'median', default='median')  # Noise fitting algorithm.
fit_by_channel = boolean(default=False)  # Fit noise separately by amplifier (NIR only).
background_method = option('median', 'model', None, default='median') # Background fit.
background_box_size = int_list(min=2, max=2, default=None)  # Background box size.
mask_science_regions = boolean(default=False)  # Mask known science regions.
apply_flat_field = boolean(default=False)  # Apply a flat correction before fitting.
n_sigma = float(default=2.0)  # Clipping level for non-background signal.
fit_histogram = boolean(default=False)  # Fit a value histogram to derive sigma.
single_mask = boolean(default=True)  # Make a single mask for all integrations.
user_mask = string(default=None)  # Path to user-supplied mask
save_mask = boolean(default=False)  # Save the created mask
save_background = boolean(default=False)  # Save the fit background
save_noise = boolean(default=False)  # Save the fit noise
skip = boolean(default=True)  # By default, skip the step.

Methods Documentation

process(input_data)[source]

Fit and subtract 1/f background noise from a ramp data set.

Input data is expected to be a ramp file (RampModel), in between jump and ramp fitting steps, or a rate file (ImageModel or CubeModel).

Correction algorithms implemented are:

  • “fft”: Background noise is fit in frequency space.

    Implementation is based on the NSClean algorithm, developed by Bernard Rauscher.

  • “median”: Background noise is characterized by a median along the detector slow axis. Implementation is based on the “image1overf” algorithm, developed by Chris Willott.

Parameters:
input_datastr or RampModel or ImageModel or CubeModel

Filename or input datamodel to be corrected.

Returns:
output_modelRampModel or ImageModel or CubeModel

The flicker noise corrected datamodel, matching the type of the input.