FringeFitter
- class jwst.ami.nrm_core.FringeFitter(instrument_data, oversample=3, psf_offset_ff=None, npix='default', weighted=False)[source]
Bases:
objectFit fringes to get interferometric observables for the data.
For the given information on the instrument and mask, calculate the fringe observables (visibilities and closure phases in the image plane. Original Python was by A. Greenbaum & A. Sivaramakrishnan
- Parameters:
- instrument_data
NIRISS Information on the mask geometry (namely # holes), instrument, wavelength obs mode.
- oversampleint, optional
Model oversampling (also how fine to measure the centering). Default is 3.
- psf_offset_fffloat, optional
Subpixel centering of your data, if known. Default is None.
- npixint, optional
Number of data pixels to use. Default is to use the shape of the data frame.
- weightedbool, optional
If True, use Poisson variance for weighting, otherwise do not apply any weighting. Default is False.
- instrument_data
Methods Summary
fit_fringes_all(input_model)Generate the best model to match the data (centering, scaling, rotation).
Generate the best model to match a single slice.
Methods Documentation
- fit_fringes_all(input_model)[source]
Generate the best model to match the data (centering, scaling, rotation).
- Parameters:
- input_model
JwstDataModel DM object for input
- input_model
- Returns:
- output_model
AmiOIModel AMI tables of median observables from LG algorithm fringe fitting in OIFITS format
- output_model_multi
AmiOIModel AMI tables of observables for each integration from LG algorithm fringe fitting in OIFITS format
- lgfit
AmiLgFitModel AMI cropped data, model, and residual data from LG algorithm fringe fitting
- output_model
Notes
May allow parallelization by integration (later)
- fit_fringes_single_integration(slc)[source]
Generate the best model to match a single slice.
- Parameters:
- slcint
Index of the iteration to fit (0 to nslc-1).
- Returns:
- nrmLgModel object
Model with best fit results for the given slice.
Notes
After nrm.fit_image is called, these attributes are stored in nrm object:
soln: resulting sin/cos coefficients from least squares fittingfringephase: baseline phases in radiansfringeamp: baseline amplitudes (flux normalized)redundant_cps: closure phases in radiansredundant_cas: closure amplitudesresidual: fit residuals [data - model solution]cond: matrix condition for inversionfringepistons: zero-mean piston opd in radians on each hole (eigenphases)