Source code for jwst.dq_init.dq_init_step

import logging

from stdatamodels.jwst import datamodels

from jwst.dq_init import dq_initialization
from jwst.stpipe import Step

__all__ = ["DQInitStep"]

log = logging.getLogger(__name__)


[docs] class DQInitStep(Step): """ Initialize the Data Quality extension from the mask reference file. The dq_init step initializes the pixeldq attribute of the input datamodel using the MASK reference file. For some FGS exp_types, initialize the dq attribute of the input model instead. The dq attribute of the MASK model is bitwise OR'd with the pixeldq (or dq) attribute of the input model. """ class_alias = "dq_init" spec = """ """ # noqa: E501 reference_file_types = ["mask"]
[docs] def process(self, step_input): """ Perform the dq_init calibration step. Parameters ---------- step_input : str or `~stdatamodels.jwst.datamodels.RampModel` Input JWST datamodel or filename. Returns ------- output_model : `~stdatamodels.jwst.datamodels.RampModel` \ or `~stdatamodels.jwst.datamodels.GuiderRawModel` Result JWST datamodel. """ # Try to open the input as a regular RampModel try: result = self.prepare_output(step_input, open_as_type=datamodels.RampModel) # Check to see if it's Guider raw data if result.meta.exposure.type in dq_initialization.guider_list: # Close and delete the current model if it's not the same as the input if result is not step_input: del result # Reopen as a GuiderRawModel result = self.prepare_output(step_input, open_as_type=datamodels.GuiderRawModel) log.info("Input opened as GuiderRawModel") except (TypeError, ValueError): # If the initial open attempt fails, try to open as a GuiderRawModel try: result = self.prepare_output(step_input, open_as_type=datamodels.GuiderRawModel) log.info("Input opened as GuiderRawModel") except (TypeError, ValueError): log.error("Unexpected or unknown input model type") raise except Exception: log.error("Can't open input") raise # Retrieve the mask reference file name mask_filename = self.get_reference_file(result, "mask") log.info("Using MASK reference file %s", mask_filename) # Check for a valid reference file if mask_filename == "N/A": log.warning("No MASK reference file found") log.warning("DQ initialization step will be skipped") result.meta.cal_step.dq_init = "SKIPPED" return result # Load the reference file mask_model = datamodels.MaskModel(mask_filename) # Apply the step result = dq_initialization.do_dqinit(result, mask_model) # Cleanup del mask_model return result